以太坊源码解析 - 交易源码分析


以太坊交易基本流程:

以太坊交易

完整流程分为以下几个步骤:

  • 发起交易:指定目标地址和交易金额,以及需要的gas/gaslimit
  • 交易签名:使用账户私钥对交易进行签名
  • 提交交易:把交易加入到交易缓冲池txpool中(会先对交易签名进行验证)
  • 广播交易:通知EVM执行,同时把交易信息广播给其他结点

发起交易

用户通过JSON RPC发起 eth_sendTransaction 请求,最终会调用 PublicTransactionPoolAPISendTransaction 实现,
首先根据from地址查找到对应的wallet,检查一下参数值,

  • 通过SendTxArgs.toTransaction()创建交易
  • 通过Wallet.SignTx()对交易进行签名
  • 通过submitTransaction()提交交易
//代码位于 `internal/ethapi/api.go`

func (s *PrivateAccountAPI) SendTransaction(ctx context.Context, args SendTxArgs, passwd string) (common.Hash, error) {
	if args.Nonce == nil {
		// Hold the addresse's mutex around signing to prevent concurrent assignment of
		// the same nonce to multiple accounts.
		s.nonceLock.LockAddr(args.From)
		defer s.nonceLock.UnlockAddr(args.From)
	}
	signed, err := s.signTransaction(ctx, args, passwd)
	if err != nil {
		return common.Hash{}, err
	}
	return submitTransaction(ctx, s.b, signed)
}

交易签名主要实现在 signTransaction,主要功能:

toTransaction() :创建交易
wallet.SignTxWithPassphrase(account, passwd, tx, chainID):对交易进行签名

func (s *PrivateAccountAPI) signTransaction(ctx context.Context, args SendTxArgs, passwd string) (*types.Transaction, error) {
	// Look up the wallet containing the requested signer
	account := accounts.Account{Address: args.From}
	wallet, err := s.am.Find(account)
	if err != nil {
		return nil, err
	}
	// Set some sanity defaults and terminate on failure
	if err := args.setDefaults(ctx, s.b); err != nil {
		return nil, err
	}
	// Assemble the transaction and sign with the wallet
	tx := args.toTransaction()

	var chainID *big.Int
	if config := s.b.ChainConfig(); config.IsEIP155(s.b.CurrentBlock().Number()) {
		chainID = config.ChainId
	}
	return wallet.SignTxWithPassphrase(account, passwd, tx, chainID)
}

创建交易

tx := args.toTransaction() 创建交易

先看一下SendTxArgs类型的定义:

// 代码 internal/ethapi/api.go

// SendTxArgs represents the arguments to sumbit a new transaction into the transaction pool.
type SendTxArgs struct {
	From     common.Address  `json:"from"`
	To       *common.Address `json:"to"`
	Gas      *hexutil.Uint64 `json:"gas"`
	GasPrice *hexutil.Big    `json:"gasPrice"`
	Value    *hexutil.Big    `json:"value"`
	Nonce    *hexutil.Uint64 `json:"nonce"`
	// We accept "data" and "input" for backwards-compatibility reasons. "input" is the
	// newer name and should be preferred by clients.
	Data  *hexutil.Bytes `json:"data"`
	Input *hexutil.Bytes `json:"input"`
}

可以看到是和JSON字段相应的,包括了地址、gas、金额这些交易信息,nonce是一个随账户交易次数自增的数字,一般会自动填充。交易还可以携带一些额外数据,存放在data或者input字段中,推荐用input,data是为了向后兼容。

toTransaction()函数:

// 代码 internal/ethapi/api.go

func (args *SendTxArgs) toTransaction() *types.Transaction {
	var input []byte
	if args.Data != nil {
		input = *args.Data
	} else if args.Input != nil {
		input = *args.Input
	}
	if args.To == nil {
		return types.NewContractCreation(uint64(*args.Nonce), (*big.Int)(args.Value), uint64(*args.Gas), (*big.Int)(args.GasPrice), input)
	}
	return types.NewTransaction(uint64(*args.Nonce), *args.To, (*big.Int)(args.Value), uint64(*args.Gas), (*big.Int)(args.GasPrice), input)
}

可以看到,如果目标地址为空的话,表示这是一个创建智能合约的交易,调用NewContractCreation()。否则说明这是一个普通交易,调用NewTransaction()。不管调用哪个,最终都会生成一个Transaction实例,我们看一下Transaction类型的定义:

// 代码位于core/types/transaction.go

type Transaction struct {
	data txdata
	// caches
	hash atomic.Value
	size atomic.Value
	from atomic.Value
}

type txdata struct {
	AccountNonce uint64          `json:"nonce"    gencodec:"required"`
	Price        *big.Int        `json:"gasPrice" gencodec:"required"`
	GasLimit     uint64          `json:"gas"      gencodec:"required"`
	Recipient    *common.Address `json:"to"       rlp:"nil"` // nil means contract creation
	Amount       *big.Int        `json:"value"    gencodec:"required"`
	Payload      []byte          `json:"input"    gencodec:"required"`

	// Signature values
	V *big.Int `json:"v" gencodec:"required"`
	R *big.Int `json:"r" gencodec:"required"`
	S *big.Int `json:"s" gencodec:"required"`

	// This is only used when marshaling to JSON.
	Hash *common.Hash `json:"hash" rlp:"-"`
}

交易签名

wallet.SignTxWithPassphrase 代码

// accounts/keystore/keystore_wallet.go

// SignTxWithPassphrase implements accounts.Wallet, attempting to sign the given
// transaction with the given account using passphrase as extra authentication.
func (w *keystoreWallet) SignTxWithPassphrase(account accounts.Account, passphrase string, tx *types.Transaction, chainID *big.Int) (*types.Transaction, error) {
	// Make sure the requested account is contained within
	if account.Address != w.account.Address {
		return nil, accounts.ErrUnknownAccount
	}
	if account.URL != (accounts.URL{}) && account.URL != w.account.URL {
		return nil, accounts.ErrUnknownAccount
	}
	// Account seems valid, request the keystore to sign
	return w.keystore.SignTxWithPassphrase(account, passphrase, tx, chainID)
}

w.keystore.SignTxWithPassphrase(account, passphrase, tx, chainID) 代码:
主要就是通过 SignTx 进行签名。

// 代码 accounts/keystore/keystore.go

func (ks *KeyStore) SignTxWithPassphrase(a accounts.Account, passphrase string, tx *types.Transaction, chainID *big.Int) (*types.Transaction, error) {
	_, key, err := ks.getDecryptedKey(a, passphrase)
	if err != nil {
		return nil, err
	}
	defer zeroKey(key.PrivateKey)

	// Depending on the presence of the chain ID, sign with EIP155 or homestead
	if chainID != nil {
		return types.SignTx(tx, types.NewEIP155Signer(chainID), key.PrivateKey)
	}
	return types.SignTx(tx, types.HomesteadSigner{}, key.PrivateKey)
}

这里会首先判断账户是否已经解锁,如果已经解锁的话就可以获取它的私钥。

然后创建签名器,如果要符合EIP155规范的话,需要把chainID传进去,也就是我们的“–networkid”命令行参数。

最后调用一个全局函数SignTx()完成签名:

代码位于core/types/transaction_signing.go// SignTx signs the transaction using the given signer and private key
func SignTx(tx *Transaction, s Signer, prv *ecdsa.PrivateKey) (*Transaction, error) {
	h := s.Hash(tx)
	sig, err := crypto.Sign(h[:], prv)
	if err != nil {
		return nil, err
	}
	return tx.WithSignature(s, sig)
}

主要分为3个步骤:

  • 生成交易的hash值
  • 根据hash值和私钥生成签名
  • 把签名数据填充到Transaction实例中

生成交易的hash值

以EIP155Signer为例,代码如下:

func (s EIP155Signer) Hash(tx *Transaction) common.Hash {  
    return rlpHash([]interface{}{  
        tx.data.AccountNonce,  
        tx.data.Price,  
        tx.data.GasLimit,  
        tx.data.Recipient,  
        tx.data.Amount,  
        tx.data.Payload,  
        s.chainId, uint(0), uint(0),  
    })  
}  
  
func rlpHash(x interface{}) (h common.Hash) {  
    hw := sha3.NewKeccak256()  
    rlp.Encode(hw, x)  
    hw.Sum(h[:0])  
    return h  
}  

可以看到,先用SHA3-256生成hash值,然后再进行RLP编码。RLP是一种数据序列化方法。

根据hash值和私钥生成签名-crypto.Sign()

// 代码位于crypto/signature_cgo.go:

func Sign(hash []byte, prv *ecdsa.PrivateKey) (sig []byte, err error) {  
    if len(hash) != 32 {  
        return nil, fmt.Errorf("hash is required to be exactly 32 bytes (%d)", len(hash))  
    }  
    seckey := math.PaddedBigBytes(prv.D, prv.Params().BitSize/8)  
    defer zeroBytes(seckey)  
    return secp256k1.Sign(hash, seckey)  
}  

这里是通过ECDSA算法生成签名数据。最终会返回的签名是一个字节数组,按R / S / V的顺序排列。

填充签名数据 - WithSignature

//代码位于 core/types/transaction.go

func (tx *Transaction) WithSignature(signer Signer, sig []byte) (*Transaction, error) {
	r, s, v, err := signer.SignatureValues(tx, sig)
	if err != nil {
		return nil, err
	}
	cpy := &Transaction{data: tx.data}
	cpy.data.R, cpy.data.S, cpy.data.V = r, s, v
	return cpy, nil
}

生成的签名数据是字节数组类型,需要通过signer.SignatureValues()函数转换成3个big.Int类型的数据,然后填充到Transaction结构的R / S / V字段上

提交交易

签名完成以后,就需要调用 submitTransaction() 函数提交到交易缓冲池txpool中。

先看下TxPool中的几个重要字段:

// 代码 core/tx_pool.go

type TxPool struct {
	config       TxPoolConfig
	chainconfig  *params.ChainConfig
	chain        blockChain
	gasPrice     *big.Int
	txFeed       event.Feed
	scope        event.SubscriptionScope
	chainHeadCh  chan ChainHeadEvent
	chainHeadSub event.Subscription
	signer       types.Signer
	mu           sync.RWMutex

	currentState  *state.StateDB      // Current state in the blockchain head
	pendingState  *state.ManagedState // Pending state tracking virtual nonces
	currentMaxGas uint64              // Current gas limit for transaction caps

	locals  *accountSet // Set of local transaction to exempt from eviction rules
	journal *txJournal  // Journal of local transaction to back up to disk

	pending map[common.Address]*txList   // All currently processable transactions
	queue   map[common.Address]*txList   // Queued but non-processable transactions
	beats   map[common.Address]time.Time // Last heartbeat from each known account
	all     *txLookup                    // All transactions to allow lookups
	priced  *txPricedList                // All transactions sorted by price

	wg sync.WaitGroup // for shutdown sync

	homestead bool
}

pending字段中包含了当前所有可被处理的交易列表,而queue字段中包含了所有不可被处理、也就是新加入进来的交易。下面查看一下pending字段 的txList的结构:

type txList struct {
	strict bool         // Whether nonces are strictly continuous or not
	txs    *txSortedMap // Heap indexed sorted hash map of the transactions

	costcap *big.Int // Price of the highest costing transaction (reset only if exceeds balance)
	gascap  uint64   // Gas limit of the highest spending transaction (reset only if exceeds block limit)
}

txList内部包含一个txSortedMap结构,实现按nonce排序,其内部维护了两张表:

  • 一张是包含了所有Transaction的map,key是Transaction的nonce值。之前提到过,这个nonce是随着账户的交易次数自增的一个数字,所以越新的交易,nonce值越高。
  • 还有一张表是一个数组,包含了所有nonce值,其内部是进行过堆排序的(小顶堆),nonce值按照从大到小排列。每次调用heap.Pop()时会取出最小的nonce值,也就是最老的交易。

all字段 中包含了所有的交易列表,以交易的hash作为key。

priced字段 则是把all中的交易列表按照gas price从大到小排列,如果gas price一样,则按照交易的nonce值从小到大排列。最终的目标是每次取出gas price最大、nonce最小的交易。

我们提交交易的目标是:先把交易放入queue中记录在案,然后再从queue中选一部分放入pending中进行处理。如果发现txpool满了,则依据priced中的排序,剔除低油价的交易。

txpool的默认配置:

var DefaultTxPoolConfig = TxPoolConfig{
	Journal:   "transactions.rlp",
	Rejournal: time.Hour,

	PriceLimit: 1,
	PriceBump:  10,

	AccountSlots: 16,
	GlobalSlots:  4096,
	AccountQueue: 64,
	GlobalQueue:  1024,

	Lifetime: 3 * time.Hour,
}
  • GlobalSlots:pending列表的最大长度,默认4096笔
  • AccountSlots:pending中每个账户存储的交易数的阈值,超过这个数量可能会被认为是垃圾交易或者是攻击者,多余交易可能被丢弃
  • GlobalQueue:queue列表的最大长度,默认1024笔
  • AccountQueue:queue中每个账户允许存储的最大交易数,超过会被丢弃,默认64笔
  • PriceLimit:允许进入txpool的最低gas price,默认1 Gwei
  • PriceBump:如果出现两个nonce相同的交易,gas price的差值超过该阈值则用新交易替换老交易

现在我们分析submitTransaction()函数:

//代码位于 `internal/ethapi/api.go`

func submitTransaction(ctx context.Context, b Backend, tx *types.Transaction) (common.Hash, error) {
	if err := b.SendTx(ctx, tx); err != nil {
		return common.Hash{}, err
	}
	if tx.To() == nil {
		signer := types.MakeSigner(b.ChainConfig(), b.CurrentBlock().Number())
		from, err := types.Sender(signer, tx)
		if err != nil {
			return common.Hash{}, err
		}
		addr := crypto.CreateAddress(from, tx.Nonce())
		log.Info("Submitted contract creation", "fullhash", tx.Hash().Hex(), "contract", addr.Hex())
	} else {
		log.Info("Submitted transaction", "fullhash", tx.Hash().Hex(), "recipient", tx.To())
	}
	return tx.Hash(), nil
}

这里有一个Backend参数,是在eth Service初始化时创建的,具体实现在EthApiBackend中,代码位于eth/api_backend.go。可以看到,这里先调用了SendTx()函数提交交易,然后如果发现目标地址为空,表明这是一个创建智能合约的交易,会创建合约地址。

提交交易到txpool

//代码 eth/api_backend.go

func (b *EthAPIBackend) SendTx(ctx context.Context, signedTx *types.Transaction) error {
	return b.eth.txPool.AddLocal(signedTx)
}

继续跟踪TxPool的AddLocal()函数:

// 代码位于 core/tx_pool.go

func (pool *TxPool) AddLocal(tx *types.Transaction) error {
	return pool.addTx(tx, !pool.config.NoLocals)
}

// addTx enqueues a single transaction into the pool if it is valid.
func (pool *TxPool) addTx(tx *types.Transaction, local bool) error {
	pool.mu.Lock()
	defer pool.mu.Unlock()

	// Try to inject the transaction and update any state
	replace, err := pool.add(tx, local)
	if err != nil {
		return err
	}
	// If we added a new transaction, run promotion checks and return
	if !replace {
		from, _ := types.Sender(pool.signer, tx) // already validated
		pool.promoteExecutables([]common.Address{from})
	}
	return nil
}

这里有两个主要函数:add()和promoteExecuteables()。
add()会判断是否应该把当前交易加入到queue列表中,promoteExecuteables()则会从queue中选取一些交易放入pending列表中等待执行。下面分别讨论这两个函数。

TxPool.add()

// 代码位于 core/tx_pool.go 

func (pool *TxPool) add(tx *types.Transaction, local bool) (bool, error) {
	// If the transaction is already known, discard it
	hash := tx.Hash()
	if pool.all.Get(hash) != nil {
		log.Trace("Discarding already known transaction", "hash", hash)
		return false, fmt.Errorf("known transaction: %x", hash)
	}
	// If the transaction fails basic validation, discard it
	if err := pool.validateTx(tx, local); err != nil {
		log.Trace("Discarding invalid transaction", "hash", hash, "err", err)
		invalidTxCounter.Inc(1)
		return false, err
	}
	// If the transaction pool is full, discard underpriced transactions
	if uint64(pool.all.Count()) >= pool.config.GlobalSlots+pool.config.GlobalQueue {
		// If the new transaction is underpriced, don't accept it
		if !local && pool.priced.Underpriced(tx, pool.locals) {
			log.Trace("Discarding underpriced transaction", "hash", hash, "price", tx.GasPrice())
			underpricedTxCounter.Inc(1)
			return false, ErrUnderpriced
		}
		// New transaction is better than our worse ones, make room for it
		drop := pool.priced.Discard(pool.all.Count()-int(pool.config.GlobalSlots+pool.config.GlobalQueue-1), pool.locals)
		for _, tx := range drop {
			log.Trace("Discarding freshly underpriced transaction", "hash", tx.Hash(), "price", tx.GasPrice())
			underpricedTxCounter.Inc(1)
			pool.removeTx(tx.Hash(), false)
		}
	}
	// If the transaction is replacing an already pending one, do directly
	from, _ := types.Sender(pool.signer, tx) // already validated
	if list := pool.pending[from]; list != nil && list.Overlaps(tx) {
		// Nonce already pending, check if required price bump is met
		inserted, old := list.Add(tx, pool.config.PriceBump)
		if !inserted {
			pendingDiscardCounter.Inc(1)
			return false, ErrReplaceUnderpriced
		}
		// New transaction is better, replace old one
		if old != nil {
			pool.all.Remove(old.Hash())
			pool.priced.Removed()
			pendingReplaceCounter.Inc(1)
		}
		pool.all.Add(tx)
		pool.priced.Put(tx)
		pool.journalTx(from, tx)

		log.Trace("Pooled new executable transaction", "hash", hash, "from", from, "to", tx.To())

		// We've directly injected a replacement transaction, notify subsystems
		go pool.txFeed.Send(NewTxsEvent{types.Transactions{tx}})

		return old != nil, nil
	}
	// New transaction isn't replacing a pending one, push into queue
	replace, err := pool.enqueueTx(hash, tx)
	if err != nil {
		return false, err
	}
	// Mark local addresses and journal local transactions
	if local {
		pool.locals.add(from)
	}
	pool.journalTx(from, tx)

	log.Trace("Pooled new future transaction", "hash", hash, "from", from, "to", tx.To())
	return replace, nil
}

我们分成一段一段的来分析:

hash := tx.Hash()
    if pool.all.Get(hash) != nil {
        log.Trace("Discarding already known transaction", "hash", hash)
        return false, fmt.Errorf("known transaction: %x", hash)
    }

这一段是先计算交易的hash值,然后判断是不是已经在txpool 中,在的话就直接退出。

// If the transaction fails basic validation, discard it
	if err := pool.validateTx(tx, local); err != nil {
		log.Trace("Discarding invalid transaction", "hash", hash, "err", err)
		invalidTxCounter.Inc(1)
		return false, err
	}

查看 pool.validateTx(tx, local) 代码

// 代码位于 core/tx_pool.go

func (pool *TxPool) validateTx(tx *types.Transaction, local bool) error {
	// Heuristic limit, reject transactions over 32KB to prevent DOS attacks
	if tx.Size() > 32*1024 {
		return ErrOversizedData
	}
	// Transactions can't be negative. This may never happen using RLP decoded
	// transactions but may occur if you create a transaction using the RPC.
	if tx.Value().Sign() < 0 {
		return ErrNegativeValue
	}
	// Ensure the transaction doesn't exceed the current block limit gas.
	if pool.currentMaxGas < tx.Gas() {
		return ErrGasLimit
	}
	// Make sure the transaction is signed properly
	from, err := types.Sender(pool.signer, tx)
	if err != nil {
		return ErrInvalidSender
	}
	// Drop non-local transactions under our own minimal accepted gas price
	local = local || pool.locals.contains(from) // account may be local even if the transaction arrived from the network
	if !local && pool.gasPrice.Cmp(tx.GasPrice()) > 0 {
		return ErrUnderpriced
	}
	// Ensure the transaction adheres to nonce ordering
	if pool.currentState.GetNonce(from) > tx.Nonce() {
		return ErrNonceTooLow
	}
	// Transactor should have enough funds to cover the costs
	// cost == V + GP * GL
	if pool.currentState.GetBalance(from).Cmp(tx.Cost()) < 0 {
		return ErrInsufficientFunds
	}
	intrGas, err := IntrinsicGas(tx.Data(), tx.To() == nil, pool.homestead)
	if err != nil {
		return err
	}
	if tx.Gas() < intrGas {
		return ErrIntrinsicGas
	}
	return nil
}

这一段是验证交易的有效性,主要进行以下几个方面的检查:

  • 数据量必须<32KB
  • 交易金额必须非负(>=0)
  • 交易的gas limit必须低于block的gas limit
  • 签名数据必须有效,能够解析出发送者地址
  • 交易的gas price必须高于pool设定的最低gas price(除非是本地交易)
  • 交易的nonce值必须高于当前链上该账户的nonce值(低于则说明这笔交易已经被打包过了)
  • 当前账户余额必须大于“交易金额 + gasprice * gaslimit”
  • 交易的gas limit必须大于对应数据量所需的最低gas水平
if uint64(len(pool.all)) >= pool.config.GlobalSlots+pool.config.GlobalQueue {  
    // If the new transaction is underpriced, don't accept it  
    if !local && pool.priced.Underpriced(tx, pool.locals) {  
        log.Trace("Discarding underpriced transaction", "hash", hash, "price", tx.GasPrice())  
        underpricedTxCounter.Inc(1)  
        return false, ErrUnderpriced  
    }  
    // New transaction is better than our worse ones, make room for it  
    drop := pool.priced.Discard(len(pool.all)-int(pool.config.GlobalSlots+pool.config.GlobalQueue-1), pool.locals)  
    for _, tx := range drop {  
        log.Trace("Discarding freshly underpriced transaction", "hash", tx.Hash(), "price", tx.GasPrice())  
        underpricedTxCounter.Inc(1)  
        pool.removeTx(tx.Hash(), false)  
    }  
}  

这一段是在当前txpool已满的情况下,剔除掉低油价的交易。还记得之前有个priced字段存储了按gas price以及nonce排序的交易列表吗?这里会先把当前交易的gas price和当前池中的最低价进行比较:

  • 如果低于最低价,直接丢弃该交易返回
  • 如果高于最低价,则从txpool中剔除一些低价的交易
// New transaction isn't replacing a pending one, push into queue  
    replace, err := pool.enqueueTx(hash, tx)  
    if err != nil {  
        return false, err  
    }  

如果之前的那些检查都没有问题,就真正调用enqueueTx()函数把交易加入到queue列表中了。

// Mark local addresses and journal local transactions  
    if local {  
        pool.locals.add(from)  
    }  
    pool.journalTx(from, tx)

最后,如果发现这个账户是本地的,就把它加到一个白名单里,默认会保证本地交易优先被加到txpool中。

TxPool.promoteExecuteables()

主要目的是把交易从queue列表“提拔”到pending列表,代码逻辑比较清楚,具体可以参见下面这张图:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-PUzBtCld-1656316462606)(http://olgjbx93m.bkt.clouddn.com/20180201-125715.png)]

根据不同的目的可以分为3块,分别以粉色、紫色、绿色标识。

粉色部分主要是为了把queue中的交易“提拔”到pending中。当然在这之前需要先要进行一番检查:

  • 丢弃nonce < 账户当前nonce的交易,也就是已经被打包过的交易
  • 丢弃转账金额 + gas消耗 > 账户余额的交易,也就是会out-of-gas的交易
  • 丢弃gas limit > block gas limit的交易,这部分交易可能会导致区块生成失败

紫色部分主要是为了清理pending列表,使其满足GlobalSlots和AccountSlots的限制条件:

  • 如果有些账户的交易数超过了AccountSlots,则先按交易数最少的账户进行均衡。举例来说,如果有10个账户交易数超过了AccountSlots(默认16),其中交易数最少的账户包含20笔交易,那么先把其他9个账户的交易数量削减到20。
  • 如果经过上面的步骤,pending的长度还是超过了GlobalSlots,那就严格按照AccountSlots进行均衡,也就是把上面的10个账户的交易数进一步削减到16。

绿色部分主要是为了清理queue列表,使其满足GlobalQueue和AccountQueue的限制条件:

  • 如果每个账户的交易数超过了AccountQueue,丢弃多余交易
  • 如果queue的长度超过了GlobalQueue,则把账户按最后一次心跳时间排序,然后依次去除账户中的交易,直到满足限制条件位置。
// 代码位于 core/tx_pool.go

func (pool *TxPool) promoteExecutables(accounts []common.Address) {
	// Track the promoted transactions to broadcast them at once
	var promoted []*types.Transaction

	// Gather all the accounts potentially needing updates
	if accounts == nil {
		accounts = make([]common.Address, 0, len(pool.queue))
		for addr := range pool.queue {
			accounts = append(accounts, addr)
		}
	}
	// Iterate over all accounts and promote any executable transactions
	for _, addr := range accounts {
		list := pool.queue[addr]
		if list == nil {
			continue // Just in case someone calls with a non existing account
		}
		// Drop all transactions that are deemed too old (low nonce)
		for _, tx := range list.Forward(pool.currentState.GetNonce(addr)) {
			hash := tx.Hash()
			log.Trace("Removed old queued transaction", "hash", hash)
			pool.all.Remove(hash)
			pool.priced.Removed()
		}
		// Drop all transactions that are too costly (low balance or out of gas)
		drops, _ := list.Filter(pool.currentState.GetBalance(addr), pool.currentMaxGas)
		for _, tx := range drops {
			hash := tx.Hash()
			log.Trace("Removed unpayable queued transaction", "hash", hash)
			pool.all.Remove(hash)
			pool.priced.Removed()
			queuedNofundsCounter.Inc(1)
		}
		// Gather all executable transactions and promote them
		for _, tx := range list.Ready(pool.pendingState.GetNonce(addr)) {
			hash := tx.Hash()
			if pool.promoteTx(addr, hash, tx) {
				log.Trace("Promoting queued transaction", "hash", hash)
				promoted = append(promoted, tx)
			}
		}
		// Drop all transactions over the allowed limit
		if !pool.locals.contains(addr) {
			for _, tx := range list.Cap(int(pool.config.AccountQueue)) {
				hash := tx.Hash()
				pool.all.Remove(hash)
				pool.priced.Removed()
				queuedRateLimitCounter.Inc(1)
				log.Trace("Removed cap-exceeding queued transaction", "hash", hash)
			}
		}
		// Delete the entire queue entry if it became empty.
		if list.Empty() {
			delete(pool.queue, addr)
		}
	}
	// Notify subsystem for new promoted transactions.
	if len(promoted) > 0 {
		pool.txFeed.Send(NewTxsEvent{promoted})
	}
	// If the pending limit is overflown, start equalizing allowances
	pending := uint64(0)
	for _, list := range pool.pending {
		pending += uint64(list.Len())
	}
	if pending > pool.config.GlobalSlots {
		pendingBeforeCap := pending
		// Assemble a spam order to penalize large transactors first
		spammers := prque.New()
		for addr, list := range pool.pending {
			// Only evict transactions from high rollers
			if !pool.locals.contains(addr) && uint64(list.Len()) > pool.config.AccountSlots {
				spammers.Push(addr, float32(list.Len()))
			}
		}
		// Gradually drop transactions from offenders
		offenders := []common.Address{}
		for pending > pool.config.GlobalSlots && !spammers.Empty() {
			// Retrieve the next offender if not local address
			offender, _ := spammers.Pop()
			offenders = append(offenders, offender.(common.Address))

			// Equalize balances until all the same or below threshold
			if len(offenders) > 1 {
				// Calculate the equalization threshold for all current offenders
				threshold := pool.pending[offender.(common.Address)].Len()

				// Iteratively reduce all offenders until below limit or threshold reached
				for pending > pool.config.GlobalSlots && pool.pending[offenders[len(offenders)-2]].Len() > threshold {
					for i := 0; i < len(offenders)-1; i++ {
						list := pool.pending[offenders[i]]
						for _, tx := range list.Cap(list.Len() - 1) {
							// Drop the transaction from the global pools too
							hash := tx.Hash()
							pool.all.Remove(hash)
							pool.priced.Removed()

							// Update the account nonce to the dropped transaction
							if nonce := tx.Nonce(); pool.pendingState.GetNonce(offenders[i]) > nonce {
								pool.pendingState.SetNonce(offenders[i], nonce)
							}
							log.Trace("Removed fairness-exceeding pending transaction", "hash", hash)
						}
						pending--
					}
				}
			}
		}
		// If still above threshold, reduce to limit or min allowance
		if pending > pool.config.GlobalSlots && len(offenders) > 0 {
			for pending > pool.config.GlobalSlots && uint64(pool.pending[offenders[len(offenders)-1]].Len()) > pool.config.AccountSlots {
				for _, addr := range offenders {
					list := pool.pending[addr]
					for _, tx := range list.Cap(list.Len() - 1) {
						// Drop the transaction from the global pools too
						hash := tx.Hash()
						pool.all.Remove(hash)
						pool.priced.Removed()

						// Update the account nonce to the dropped transaction
						if nonce := tx.Nonce(); pool.pendingState.GetNonce(addr) > nonce {
							pool.pendingState.SetNonce(addr, nonce)
						}
						log.Trace("Removed fairness-exceeding pending transaction", "hash", hash)
					}
					pending--
				}
			}
		}
		pendingRateLimitCounter.Inc(int64(pendingBeforeCap - pending))
	}
	// If we've queued more transactions than the hard limit, drop oldest ones
	queued := uint64(0)
	for _, list := range pool.queue {
		queued += uint64(list.Len())
	}
	if queued > pool.config.GlobalQueue {
		// Sort all accounts with queued transactions by heartbeat
		addresses := make(addresssByHeartbeat, 0, len(pool.queue))
		for addr := range pool.queue {
			if !pool.locals.contains(addr) { // don't drop locals
				addresses = append(addresses, addressByHeartbeat{addr, pool.beats[addr]})
			}
		}
		sort.Sort(addresses)

		// Drop transactions until the total is below the limit or only locals remain
		for drop := queued - pool.config.GlobalQueue; drop > 0 && len(addresses) > 0; {
			addr := addresses[len(addresses)-1]
			list := pool.queue[addr.address]

			addresses = addresses[:len(addresses)-1]

			// Drop all transactions if they are less than the overflow
			if size := uint64(list.Len()); size <= drop {
				for _, tx := range list.Flatten() {
					pool.removeTx(tx.Hash(), true)
				}
				drop -= size
				queuedRateLimitCounter.Inc(int64(size))
				continue
			}
			// Otherwise drop only last few transactions
			txs := list.Flatten()
			for i := len(txs) - 1; i >= 0 && drop > 0; i-- {
				pool.removeTx(txs[i].Hash(), true)
				drop--
				queuedRateLimitCounter.Inc(1)
			}
		}
	}
}

广播交易

交易提交到txpool中后,还需要广播出去,一方面通知EVM执行该交易,另一方面要把交易信息广播给其他结点。具体调用在 promoteExecutables 提到的promoteTx()函数中:

// 代码位于 core/tx_pool.go

func (pool *TxPool) promoteExecutables(accounts []common.Address) {

...
 // Gather all executable transactions and promote them
		for _, tx := range list.Ready(pool.pendingState.GetNonce(addr)) {
			hash := tx.Hash()
			if pool.promoteTx(addr, hash, tx) {
				log.Trace("Promoting queued transaction", "hash", hash)
				promoted = append(promoted, tx)
			}
		}
	}
	
	...
	// Notify subsystem for new promoted transactions.
	if len(promoted) > 0 {
		pool.txFeed.Send(NewTxsEvent{promoted})
	}

promoteTx 详细代码:

// 代码 crypto/tx_pool.go
func (pool *TxPool) promoteTx(addr common.Address, hash common.Hash, tx *types.Transaction) bool {
	// Try to insert the transaction into the pending queue
	if pool.pending[addr] == nil {
		pool.pending[addr] = newTxList(true)
	}
	list := pool.pending[addr]

	inserted, old := list.Add(tx, pool.config.PriceBump)
	if !inserted {
		// An older transaction was better, discard this
		pool.all.Remove(hash)
		pool.priced.Removed()

		pendingDiscardCounter.Inc(1)
		return false
	}
	// Otherwise discard any previous transaction and mark this
	if old != nil {
		pool.all.Remove(old.Hash())
		pool.priced.Removed()

		pendingReplaceCounter.Inc(1)
	}
	// Failsafe to work around direct pending inserts (tests)
	if pool.all.Get(hash) == nil {
		pool.all.Add(tx)
		pool.priced.Put(tx)
	}
	// Set the potentially new pending nonce and notify any subsystems of the new tx
	pool.beats[addr] = time.Now()
	pool.pendingState.SetNonce(addr, tx.Nonce()+1)

	return true
}

先更新了最后一次心跳时间,然后更新账户的nonce值。

pool.txFeed.Send 发送一个TxPreEvent事件,外部可以通过SubscribeNewTxsEvent()函数订阅该事件:

func (pool *TxPool) SubscribeNewTxsEvent(ch chan<- core.NewTxsEvent) event.Subscription {
	return pool.scope.Track(pool.txFeed.Subscribe(ch))
}

我们只要搜索一下这个函数,就可以知道哪些组件订阅了该事件了。

执行交易

第一个订阅的地方位于miner/worker.go:

func newWorker(config *params.ChainConfig, engine consensus.Engine, coinbase common.Address, eth Backend, mux *event.TypeMux) *worker {
	....
	
	// Subscribe NewTxsEvent for tx pool
	worker.txsSub = eth.TxPool().SubscribeNewTxsEvent(worker.txsCh)
	....
}

开启了一个goroutine来接收TxPreEvent,看一下update()函数:

func (self *worker) update() {
	defer self.txsSub.Unsubscribe()
	defer self.chainHeadSub.Unsubscribe()
	defer self.chainSideSub.Unsubscribe()

	for {
		...

		// Handle NewTxsEvent
		case ev := <-self.txsCh:
			// Apply transactions to the pending state if we're not mining.
			//
			// Note all transactions received may not be continuous with transactions
			// already included in the current mining block. These transactions will
			// be automatically eliminated.
			if atomic.LoadInt32(&self.mining) == 0 {
				self.currentMu.Lock()
				txs := make(map[common.Address]types.Transactions)
				for _, tx := range ev.Txs {
					acc, _ := types.Sender(self.current.signer, tx)
					txs[acc] = append(txs[acc], tx)
				}
				txset := types.NewTransactionsByPriceAndNonce(self.current.signer, txs)
				self.current.commitTransactions(self.mux, txset, self.chain, self.coinbase)
				self.updateSnapshot()
				self.currentMu.Unlock()
			} else {
				// If we're mining, but nothing is being processed, wake on new transactions
				if self.config.Clique != nil && self.config.Clique.Period == 0 {
					self.commitNewWork()
				}
			}

		...
		}
	}
}

可以看到,如果结点不挖矿的话,这里会立即调用commitTransactions()提交给EVM执行,获得本地回执。

如果结点挖矿的话,miner会调用commitNewWork(),内部也会调用commitTransactions()执行交易。

广播给其他结点

另一个订阅的地方位于eth/handler.go:

func (pm *ProtocolManager) Start(maxPeers int) {
...

	// broadcast transactions
	pm.txsCh = make(chan core.NewTxsEvent, txChanSize)
	pm.txsSub = pm.txpool.SubscribeNewTxsEvent(pm.txsCh)
	go pm.txBroadcastLoop()
	
...
}

同样也是启动了一个goroutine来接收TxPreEvent事件,看一下txBroadcastLoop()函数:

func (pm *ProtocolManager) txBroadcastLoop() {  
    for {  
        select {  
        case event := <-pm.txCh:  
            pm.BroadcastTx(event.Tx.Hash(), event.Tx)  
  
        // Err() channel will be closed when unsubscribing.  
        case <-pm.txSub.Err():  
            return  
        }  
    }  
}

继续跟踪BroadcastTx()函数:

func (pm *ProtocolManager) BroadcastTxs(txs types.Transactions) {
	var txset = make(map[*peer]types.Transactions)

	// Broadcast transactions to a batch of peers not knowing about it
	for _, tx := range txs {
		peers := pm.peers.PeersWithoutTx(tx.Hash())
		for _, peer := range peers {
			txset[peer] = append(txset[peer], tx)
		}
		log.Trace("Broadcast transaction", "hash", tx.Hash(), "recipients", len(peers))
	}
	// FIXME include this again: peers = peers[:int(math.Sqrt(float64(len(peers))))]
	for peer, txs := range txset {
		peer.AsyncSendTransactions(txs)
	}
}

可以看到,这里会通过P2P向所有没有该交易的结点发送该交易。


文章作者: Jack Li
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 Jack Li !
评论
  目录